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For a given graph G of order n with m edges, and a real 
symmetric matrix associated to the graph, M (G) ∈ Rn×n, 
the interlacing graph reduction problem is to find a graph 
Gr of order r < n such that the eigenvalues of M (Gr)
interlace the eigenvalues of M (G). Graph contractions over 
partitions of the vertices are widely used as a combinatorial 
graph reduction tool. In this study, we derive a graph 
reduction interlacing theorem based on subspace mappings 
and the minmax theory. We then define a class of edge-
matching graph contractions and show how two types of 
edge-matching contractions provide Laplacian and normalized 
Laplacian interlacing. An O (mn) algorithm is provided for 
finding a normalized Laplacian interlacing contraction and 
an O (n2 + nm) algorithm is provided for finding a Laplacian 
interlacing contraction.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The effect of combinatorial operations on graph spectra is an evolving branch of graph 
theory, linking together combinatorial graph theory with the spectral analysis of the al-
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gebraic structures of graphs. In general, there is an interest to understand how certain 
graph reduction operations relate to spectral and combinatorial properties. Of particu-
lar interest are reductions that satisfy an interlacing property between algebraic graph 
representations. Interlacing properties of algebraic structures of graphs have been shown 
to have combinatorial interpretations. Haemers used the adjacency and Laplacian ma-
trix interlacing to provide combinatorical results on the chromatic number and spectral 
bounds [1]. The neighborhood reassignment operation has been shown to provide an 
interlacing of the normalized Laplacian [2], and Chen et al. provide an interlacing result 
on contracted normalized Laplacians [3].

Partitioning the vertices of a graph is a combinatorial operation extensively studied in 
graph theory in the context of graph clustering [4] and network communities [5], and for 
spectral clustering methods [6]. Partitioning combined with node and edge contractions 
along those partitions lead to reduced order graphs. In this direction, we define edge-
matching contractions as a class of graph contractions with a one-to-one correspondence 
of a subset of edges in the full order graph to those in the contracted graph. We then 
explore two types of edge-matching contractions, cycle invariant contractions and node-
removal equivalent contractions. Cycle-invariant contractions preserve the cycle structure 
of the graph in the contracted graph, and node-removal equivalent contractions are 
cases where a contraction can be obtained also from a node-removal operation. We 
show how contraction of these types lead to interlacing of the normalized-Laplacian and 
Laplacian graph matrices. Two algorithms of complexity O (mn) and O

(
n2 + nm

)
are 

then provided for finding, if they exist, a cycle-invariant contraction and a node-removal 
equivalent contraction respectively for a given graph with n vertices and m edges.

The remaining sections of this paper are as follows. In Section 2, the interlacing graph 
reduction problem is presented and an interlacing graph reduction theorem is derived. 
In Section 3 we formulate the graph contraction operation for simple undirected graphs, 
and introduce the class of edge-matching graph contractions and two sub-classes of cycle-
invariant and node-removal equivalent graph contractions. In Section 4, the interlacing 
graph reduction problem is solved for these two classes for the Laplacian and normalized-
Laplacian matrices, and Section 5 provides case studies of the interlacing methods.

Preliminaries The integer set {1, . . . , n} is denoted as [1, n]. An undirected graph G =
(V, E) consists of a vertex set V (G), and an edge set E (G) = {ε1, . . . , ε|E|} with εk ∈
V2. The order of the graph is the number of vertices |V (G) |. Two nodes u, v ∈ V (G)
are adjacent if they are the endpoints of an edge, and we denote this by u ∼ v. The 
neighborhood Nv (G) is the set of all nodes adjacent to v in G. The degree of a node v, 
denoted dv (G), is the number of nodes adjacent to it, dv (G) = |Nv (G)|. A path in a graph 
is a sequence of distinct adjacent nodes. A simple cycle is a path with an additional edge 
such that the first and last vertices are repeated. A graph G is connected if we can find a 
path between any pair of nodes. A simple graph does not include self-loops or duplicate 
edges. A multi-graph is a graph that may include duplicate edges. We denote G\VR as 
the graph obtained from G by removing all nodes v ∈ VR ⊂ V from V (G) and removing 
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all edges in E (G) adjacent to v. We denote G\ER as a graph obtained from G by removing 
all edges ε ∈ ER from E (G). A subgraph GS = (VS , ES) of a graph G = (V, E), denoted 
as GS ⊆ G, is any graph such that VS ⊆ V and ES ⊆ E ∩ V2

S . An induced subgraph 
G [VS ] is a subgraph GS ⊆ G such that ES = EG ∩ V2

S . An induced subgraph G [VS ] is a 
connected component of G if it is connected and no node in VS is adjacent to a node in 
V (G) \VS . The set T (G) denotes the set of all spanning trees of a connected graph G. 
For T ∈ T (G), the co-tree graph G\E (T ) is denoted as C (T ) [7].

2. Interlacing graph reductions

Graph matrices are algebraic representations of graphs, and the spectral and algebraic 
properties of these matrices can provide insights about combinatorial properties of the 
underlying graph, e.g., Fiedler’s seminal results on the Laplacian algebraic connectiv-
ity [8]. The interlacing property of matrices has been extensively studied with classic 
algebraic results such as the Poincare separation theorem [9, p. 119], and matrix com-
binatorial results such as the relation of equitable partitions with tight interlacing [10]. 
Here we study what types of reduced graphs have interlacing graph matrices.

The spectrum of a real symmetric matrix A ∈ Rn×n is the set of eigenvalues 
{λk (A)}nk=1 where λk (A) is the kth eigenvalue of A in ascending order. Let A ∈ Rn×n

and B ∈ Rr×r be real symmetric matrices with 0 < r < n. Then the eigenvalues of 
B interlace the eigenvalues of A, denoted B ∝ A, if λk (A) ≤ λk (B) ≤ λn−r+k (A) for 
k = 1, 2, . . . , r. The interlacing is tight if λk (A) = λk (B) or λk (B) = λn−r+k (A) for 
k = 1, 2, . . . , r. It is straight forward to show that interlacing is a transitive property.

Proposition 1. Let A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 and A3 ∈ Rn3×n3 be real symmetric 
matrices with 0 < n3 < n2 < n1. If A3 ∝ A2 and A2 ∝ A1, then A3 ∝ A1.

Proof. From A3 ∝ A2 and A2 ∝ A1 we have λk (A2) ≤ λk (A3) ≤ λn2−n3+k (A2) for k =
1, 2, . . . , n3 and λl (A1) ≤ λl (A2) ≤ λn1−n2+l (A1) for l = 1, 2, . . . , n2. From l = k we get 
λk (A1) ≤ λk (A2) ≤ λk (A3), and from l = n2−n3+k we get λk (A3) ≤ λn2−n3+k (A2) ≤
λn1−n3+k (A1), such that λk (A1) ≤ λk (A3) ≤ λn1−n3+k (A1) for k = 1, 2, . . . , n3 and we 
obtain that A3 ∝ A1. �

The most commonly studied matrices in algebraic graph theory are the adjacency 
matrix A (G) ∈ R|V|×|V|, the Laplacian matrix L (G) ∈ R|V|×|V| and the normalized 
Laplacian matrix L (G) ∈ R|V|×|V|, all of which are real symmetric matrices. They are 
defined below, where each row and column is indexed by a vertex in the graph G [7],

[A(G)]uv =
{

1, u ∼ v

0, otherwise
,

[L(G)]uv =

⎧⎪⎨
⎪⎩

du (G) , u = v

−1 u ∼ v

0, otherwise
,
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and

[L(G)]uv =

⎧⎪⎪⎨
⎪⎪⎩

1, u = v

−
(√

du (G) dv (G)
)−1

u ∼ v

0, otherwise
.

We now extend the notion of spectral interlacing properties to graphs.

Definition 1 (interlacing graphs). Consider two graphs Gn and Gr of order n and r re-
spectively, with n > r, and let M(G) ∈ Rn×n be any real symmetric matrix associated 
with the graph G. We say that the two graphs are M -interlacing if M (Gr) ∝ M (Gn), 
and denote the property by Gr ∝M Gn.

A problem arising naturally from the definition of interlacing graphs is the interlacing 
graph reduction problem.

Problem 1 (interlacing graph reduction). Consider a graph Gn of order n and let M(G) ∈
Rn×n be any real symmetric matrix associated with the graph G. Find a graph Gr of a 
given order r < n such that Gr ∝M Gn.

Finding a solution to Problem 1 may be numerically intractable for a moderate number 
of nodes, as the number cr of simple connected graphs of order r increases exponentially 
according to the recurrence 

∑
k

(
r
k

)
kck2(r−k

2 ) = r2(r2) for r ≥ 1 [11, p. 87], e.g., for 
r = 1, . . . , 6, cr = 1, 1, 4, 38, 728, 26704.

A powerful tool for proving interlacing results is the Courant-Fischer theorem, e.g., 
that a symmetric matrix and a principle submatrix of that matrix interlace [1], which 
leads to an adjacency interlacing theorem for node-removal graph reductions:

Theorem 1 (Adjacency interlacing node-removal). Consider a graph G and a node subset 
VS ⊂ V (G). Then G\VS ∝A G.

Proof. The matrix A (G\VS) is a principle submatrix of A (G), therefore, G\VS ∝A G. �
Utilizing the Courant-Fischer theorem and the following minmax inequalities (Propo-

sition 2) an interlacing graph reduction theorem is derived. We first introduce some 
notations to simplify the statement. A k-dimensional subspace of Rn is denoted as 
F (k)

n . For an r-dimensional subspace F (r)
n , the linear mapping pF(r)

n
: Rr → Rn is 

pF(r)
n

(x) = F
(r)
n x where F (r)

n ∈ Rn×r has columns giving a basis for F (r)
n such that 

x ∈ Rr �→ y ∈ F (r)
n .

Theorem 2 (Courant-Fischer [12]). Consider a real symmetric matrix M ∈ Rn×n, then 
for k ∈ [1, n]
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λk (M) = max
F(n−k+1)

n

min
x∈F(n−k+1)

n
x�=0

R (M,x) ,

and

λk (M) = min
F(k)

n

max
x∈F(k)

n
x�=0

R (M,x) ,

where R (M,x) � xTMx
xT x

is the Rayleigh quotient.

Proposition 2. Consider a subspace F (r)
n for r < n, and let f (x) : Rn → R be a real-

valued function that attains a minimum and a maximum on F\ {0} for any subspace 
F ⊆ Rn. Then the following holds for k ∈ [1, r]:

i) max
F(n−k+1)

n

min
x∈F(n−k+1)

n
x�=0

f (x) ≤ max
F(r−k+1)

r

min
x̃∈F(r−k+1)

r
x̃�=0

f
(
pF(r)

n
(x̃)

)
,

ii) min
F(n−r+k)

n

max
x∈F(n−r+k)

n
x�=0

f (x) ≥ min
F(k)

r

max
x̃∈F(k)

r
x̃�=0

f
(
pF(r)

n
(x̃)

)
.

Proof. We first prove (i). Let s ≡ n − k + 1. For all F (s)
n ⊆ Rn,

min
x∈F(s)

n
x�=0

f (x) = min

⎧⎪⎪⎨
⎪⎪⎩ min

x∈F(s)
n ∩F(r)

n
x�=0

f (x) , min
x∈F(s)

n \
{
F(s)

n ∩F(r)
n

}
x�=0

f (x)

⎫⎪⎪⎬
⎪⎪⎭

≤ min
x∈F(s)

n ∩F(r)
n

x�=0

f (x) ,

and we obtain that

max
F(s)

n

min
x∈F(s)

n
x�=0

f (x) ≤ max
F(s)

n

min
x∈F(s)

n ∩F(r)
n

x�=0

f (x) . (1)

Since k ≤ r, then s = n − k + 1 > n − r and

dim
(
F (s)

n ∩ F (r)
n

)
≥ s− (n− r) .

Therefore,

max
F(s)

n

min
x∈F(s)

n ∩F(r)
n

x�=0

f (x) = max
F(s−(n−r))

n ⊆F(r)
n

min
x∈F(s−(n−r))

n
x�=0

f (x) .
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For each F (s−(n−r))
n ⊆ F (r)

n we can find F̃ (s−(n−r))
r ⊆ Rr that is mapped to it by 

pF(r)
n

(x̃),

F̃ (s−(n−r))
r =

{
x̃ ∈ Rr|pF(r)

n
(x̃) ∈ F (s−(n−r))

n

}
,

such that

min
x∈F(s−(n−r))

n
x�=0

f (x) = min
x̃∈F̃(s−(n−r))

r
x̃�=0

f
(
pF(r)

n
(x̃)

)
.

Maximizing over all F (s−(n−r))
n ⊆ F (r)

n we obtain

max
F(s−(n−r))

n ⊆F(r)
n

min
x∈F(s−(n−r))

n
x�=0

f (x) = max
F(s−(n−r))

r

min
x̃∈F̃(s−(n−r))

r
x̃�=0

f
(
pF(r)

n
(x̃)

)
,

and

max
F(n−k+1)

n

min
x∈F(n−k+1)

n ∩F(r)
n

x�=0

f (x) = max
F(r−k+1)

r

min
x̃∈F̃(r−k+1)

r
x̃�=0

f
(
pF(r)

n
(x̃)

)
. (2)

Equation (2) together with (1) completes the proof of (i).
The proof of (ii) is as follows. Let s ≡ n − r + k . For all F (s)

n ⊆ Rn,

max
x∈F(s)

n
x�=0

f (x) = max

⎧⎪⎪⎨
⎪⎪⎩ max

x∈F(s)
n ∩F(r)

n
x�=0

f (x) , max
x∈F(s)

n \
{
F(s)

n ∩F(r)
n

}
x�=0

f (x)

⎫⎪⎪⎬
⎪⎪⎭

≥ max
x∈F(s)

n ∩F(r)
n

x�=0

f (x) ,

and

min
F(s)

n

max
x∈F(s)

n
x�=0

f (x) ≥ min
F(s)

n

max
x∈F(s)

n ∩F(r)
n

x�=0

f (x) . (3)

Since k ≥ 1 then s = n − r + k > n − r and

dim
(
F (s)

n ∩ F (r)
n

)
≥ s− (n− r) ,

and we can then replace max min with min max in the above proof of (i) and obtain

min
F(n−r+k)

n

max
x∈F(n−r+k)

n ∩F(r)
n

f (x) = min
F(k)

r

max
x̃∈F(k)

r

f
(
pF(r)

n
(x̃)

)
. (4)
x�=0 x̃�=0
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Equation (4) together with (3) completes the proof of (ii). �
Theorem 3 (Interlacing graph reduction theorem). Consider two graphs Gn and Gr of 
order n and r respectively, with n > r, and let M(G) ∈ Rn×n be any real symmetric 
matrix associated with the graph G. If there exists r-dimensional subspaces A, B ⊆ Rn

such that ∀x ∈ Rr\ {0},

R (M (Gn) , pA (x)) ≤ R (M (Gr) , x) ,

and

R (M (Gn) , pB (x)) ≥ R (M (Gr) , x) ,

then Gr ∝M Gn.

Proof. In order for Gn and Gr to be M -interlacing (Definition 2) we must prove that 
λk (M (Gn)) ≤ λk (M (Gr)) ≤ λn−r+k (M (Gn)) for k ∈ [1, r]. From the Courant–Fischer 
theorem (Theorem 2) we have

λk (M (Gn)) = max
F(n−k+1)

n

min
x∈F(n−k+1)

n
x�=0

R (M (Gn) , x) ,

and from the min-max properties (Proposition 2) with F (r)
n ≡ A we have for k ∈ [1, r],

λk (M (Gn)) ≤ max
F(r−k+1)

r

min
x∈F(r−k+1)

r
x�=0

R (M (Gn) , pA (x)) .

Since R (M (Gn) , pA (x)) ≤ R (M (Gr) , x), therefore,

λk (M (Gn)) ≤ max
F(r−k+1)

r

min
x∈F(r−k+1)

r
x�=0

R (M (Gr) , x)

= λk (M (Gr)) ,

and λk (M (Gn)) ≤ λk (M (Gr)) for k ∈ [1, r]. In order to complete the interlacing proof 
it is left to show that λk (M (Gr)) ≤ λn−r+k (M (Gn)) for k ∈ [1, r]. From the Courant–
Fischer theorem (Theorem 2) we get

λn−r+k (M (Gn)) = min
F(n−r+k)

n

max
x∈F(n−r+k)

n
x�=0

R (M (Gn) , x) ,

and from the min-max properties (Proposition 2) with F (r)
n ≡ B we have
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λn−r+k (M (Gn)) ≥ min
F(k)

r

max
x∈F(k)

r
x�=0

R (M (Gn) , pB (x)) .

Since R (M (Gn) , pB (x)) ≥ R (M (Gr) , x), therefore,

λn−r+k (M (Gn)) ≥ min
F(k)

r

max
x∈F(k)

r
x�=0

R (M (Gr) , x)

= λk (M (Gr)) ,

and λk (M (Gn)) ≤ λn−r+k (M (Gr)) for k ∈ [1, r], completing the proof. �
In the next section we describe graph contractions as a constructive method for per-

forming graph reductions, and introduce a class of contractions that, based on Theorem 3, 
will lead to efficient algorithms for finding interlacing graph reductions.

3. Graph contractions

Graph contractions are a graph reduction method based on partitions of the vertex 
set. They are a useful algorithmic tool applied to a variety of graph-theoretical problems, 
e.g., for obtaining the connected components [13] or finding all spanning trees of a graph 
[14,15]. We now define several graph operations required for vertex partitions and graph 
contractions and derive results that will allow us to relate graph contractions and graph 
interlacing.

For an integer r satisfying 1 ≤ r ≤ n, an r-partition of a vertex set V of order n, 
denoted πr (V), is a set of r cells {Ci}ri=1 such that Ci ∩ Cj = ∅ and ∪r

i=1Ci = V. 
We denote the ith cell of a partition π as Ci (π), and the cell neighborhood NCi

(G) is 
defined as NCi

� {∪v∈Ci
Nv (G)} \Ci. For r = n, Ci (πn) = i is the identity partition, 

which contains n singletons (a cell with a single vertex). An atom partition πn−1 (V)
contains n − 2 singletons and a single 2-vertex cell. The set of all r-partitions of V
is denoted by Πr (V), and the set of all partitions of V is Π (V) � ∪n

r=1Πr (V). For a 
graph G = (V, E), we may denote πr (V) and Πr (V) as πr (G) and Πr (G). For a graph 
with ncc connected components, we define the connected components partition πcc (G) as 
the partition πcc (G) = {Ci}ncc

i=1, such that G [Ci] is the ith connected component of G. 
Hereafter G = (V, E) is a simple connected graph of order n.

Definition 2 (partition function). For a graph G and r-partition π ∈ Πr (G), the partition 
function is a map fπ : V (G) → [1, r] from each node in V to its cell index, i.e., fπ (v) �
{i ∈ [1, r] |Ci (π) ∩ v �= ∅}. More generally, for a subset VS ⊆ V (G) we have fπ (VS) �
{i ∈ [1, r] |Ci (π) ∩ VS �= ∅}.

The quotient of a graph G over a partition π ∈ Πr(G), denoted by G/π, is the 
multi-graph of order r with an edge {u, v} for each edge between nodes in Cu (π)
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Fig. 1. Full order graph and its quotient and contraction over the vertex partition π = {{v1} , {v2} ,
{v3} , {v4, v5}}.

and Cv (π), i.e., G/π =
(
[1, r] , {ε̃j}|E|j=1

)
with ε̃j = {fπ (hE (εj)) , fπ (tE (εj))}, where 

εj ∈ E (G) and hE (ε) , tE (ε) : E (G) → V (G) assign a head and a tail to the end-
nodes of each edge (thus, ε = (hE(ε), tE(ε))). The graph contraction of G over π is 
the simple graph denoted as G � π which is obtained from the quotient G/π by remov-
ing all self-loops and redundant duplicate edges. Equivalently, G � π = ([1, r] , Er) with 

Er =
{
ε̃ ∈ [1, r]2 |ε̃ ∈ E (G/π) , hE (ε̃) �= tE (ε̃)

}
. If π is an atom partition we call G � π an 

atom contraction. For example, consider the partition of π = {{v1} , {v2} , {v3} , {v4, v5}}, 
for the graph G shown in Fig. 1. The quotient G/π and contraction G � π of the graph 
are shown in Fig. 1. Notice that this is an example of an atom partition and atom 
contraction.

Node removal is the simplest graph-reduction method. However, in some cases the 
same reduced graph can be obtained either from node-removal or from a graph contrac-
tion. We define here these contractions as node-removal equivalent contractions.

Definition 3 (node-removal equivalent contraction). For the graph G and its contraction 
G � π, we say that G � π is node-removal equivalent if there is a subset VS ⊂ V (G) such 
that G � π = G\VS .

Cycles play an important role in the properties of graphs, and we define a cycle-
invariant graph contraction as a contraction that preserves the cycle structure of the full 
graph.

Definition 4 (cycle-invariant contraction). Consider a graph G and its contraction G �π, 
then we say that the contraction G � π is cycle-invariant if there is one-to-one mapping 
between the set of simple cycles of the full-order graph and the set of simple cycles of 
the contracted graph.
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Fig. 2. Full order graph and its cycle-invariant and node-removal equivalent contraction.

For example, consider the partition π = {{v1, v2, v3} , {v4} , {v5}} for the graph shown 
in Fig. 2. The resulting contraction over the graph is cycle-invariant (Definition 4) with 
the cycle v3v4v5v3 of G mapped to the cycle v1v2v3v1 of G � π, and is also node-removal 
equivalent (Definition 3) with VS = {v1, v2}. Notice that if the edge {v1, v5} were added 
in Fig. 2, the same contraction would not be a cycle-invariant contraction; however, it 
would still be node-removal equivalent with VS = {v1, v2}.

Lemma 1 (subgraph contraction lemma). Consider a graph G and its subgraph GR = G\ER
for ER ⊆ E (G). Then for any π ∈ Π (G), GR � π ⊆ G � π.

Proof. For any ε̃ ∈ E (GR � π) we can find ε ∈ E (GR) such that ε̃ = {fπ(hE (ε) ),
fπ (tE (ε))}. Since E (GR) ⊆ E (G), therefore ε ∈ E (G) and {fπ(hE (ε)) , fπ (tE (ε))} ∈
E (G � π). We conclude that E (GR � π) ⊆ E (G � π), and since V (GR � π) = V (G � π)
we obtain that GR � π ⊆ G � π. �
Lemma 2. Consider a graph G and its contraction G � π for π ∈ Π (G). Then ∀u ∈
V (G) , ∀ũ ∈ V (G � π), we have u ∈ NCũ

(G) if and only if fπ (u) ∼ ũ.

Proof. If u ∈ NCũ
then ∃v ∈ Cũ such that u ∼ v with ε = {u, v} ∈ E (G), and therefore 

{fπ (u) , fπ (v)} = {fπ (u) , ũ} ∈ E (G � π) and fπ (u) ∼ ũ. If fπ (u) ∼ ũ, then ∃v ∈ Cũ

such that u ∼ v and therefore u ∈ NCũ
. �

Lemma 3. If a graph G is connected then its graph contraction G � π is connected.

Proof. If G is connected then ∀u, v ∈ V, there is a path uu1u2 . . . upv. For any ũ, ̃v ∈
V (G � π) we can find u, v ∈ V such that fπ (u) = ũ and fπ (v) = ṽ. If we then apply the 
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partition function on the path uu1u2 . . . upv we obtain a walk (including self loops) in 
G � π, ũfπ (u1) fπ (u2) . . . fπ (up) ṽ, therefore, G � π is a connected graph. �

The following result relates the degree of a node in a contracted graph to its cell-
neighborhood.

Proposition 3 (degree-contraction). Consider a graph G and its contraction G � π for 
π ∈ Π (G). Then ∀ṽ ∈ V (G � π), dṽ (G � π) = |fπ (NCṽ

(G))|.

Proof. From Definition 2 we have fπ (NCṽ
(G)) = {i ∈ [1, r] |Ci (π) ∩NCṽ

(G) �= ∅}, and 
from Lemma 2 we obtain that ∀ũ, ̃v ∈ V (G � π), ṽ ∼ ũ if and only if ũ ∈ fπ (NCṽ

) such 
that fπ (NCṽ

) = Nṽ (G � π), and therefore, dṽ (G � π) = |fπ (NCṽ
)|. �

3.1. Graph contraction posets

Partially-ordered sets (posets) are an essential set-theoretical concept. Chains are 
totally-ordered subsets of the posets and are a useful tool for proving set-theoretical 
results. Here we show how graph contractions fall under the definition of a poset and 
will then establish contraction chains and their corresponding contraction sequences as 
a basis for proving cases of graph matrices interlacing.

Two partitions πr1 , πr2 ∈ Π (V) may comply with a refinement relation.

Definition 5 (refinement). Consider two partitions πr1 , πr2 ∈ Π (V) of a vertex set V
where r1 ≤ r2 ≤ |V|. Then we say πr2 is a refinement of πr1 if ∀j ∈ {1, 2, . . . , r2} we can 
find i ∈ {1, 2, . . . , r1} such that Cj (πr2) ⊆ Ci (πr1), and we denote πr2 ≤ πr1 . If πr2 ≤ πr1

and r1 < r2 we denote πr2 < πr1 . An N -chain is a partition set χ (V) = {πri}
N
i=1 ⊆ Π (V)

such that πr1 < πr2 < . . . < πrN .

If two partitions πr1 , πr2 ∈ Π (V) comply with the refinement relation, we can 
construct the coarsening partition δ (πr2 , πr1) ∈ Πr1 (Vr2) with Cj (δ (πr2 , πr1)) =
{k ∈ {1, 2, . . . , r2} |Ck (πr2) ⊆ Cj (πr1)}. We can now define the coarsening sequence.

Definition 6 (coarsening sequence). Consider a vertex set V and its N -chain χ(V) ⊆
Π(V). Then we define the coarsening sequence as Δ(χ) = {δi}N−1

i=1 with δi � δ(πri+1 , πri).

The refinement relation is reflexive, anti-symmetric and transitive, therefore, the set 
of partitions together with the refinement relation, (Π (V) ,≤), falls under the definition 
of a finite partial-ordered set (poset). Let G = (V, E), we define the contraction set 
G�Π � {G � π|π ∈ Π (V)}, and define the contraction binary relation G�πr1 ≤ G�πr2 if 
πr1 ≤ πr2 . Since there is a one-to-one correspondence between (G � Π,≤) and (Π (V) ,≤), 
the contraction set with the contraction binary relation, (G � Π,≤), is also a poset, 
and for each N -chain χ ⊆ Π (V) there is a corresponding contraction chain G � χ =
{G � πri}

N
i=1 ⊆ G � Π.
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For each coarsening sequence Δ (χ) we can then define a corresponding contraction 
sequence, a series of graphs where each graph in the series is a graph contraction of the 
former graph over the coarsening partition in the coarsening sequence.

Definition 7 (contraction sequence). Consider a graph G and an N-chain χ(V) ⊆ Π (V (G))
with coarsening sequence Δ (χ) = {δi}N−1

i=1 . Then we define the contraction sequence
G � Δ (χ) � {Gi}N−1

i=0 with Gi = Gi−1 � δN−i and G0 = G � πrN .

Proposition 4. Consider a graph G and its partition π ∈ Π (G), and let χ = {πri}
N
i=1 ⊆

Π (V) be a chain with πr1 = π and corresponding contraction sequence G � Δ (χ) =
{Gi}N−1

i=0 . Then GN−1 = G � π.

Proof. It is sufficient to prove for any two-chain π = πr1 < πr2 with Δ (χ) = δ (πr2 , πr1), 
i.e., G � π = (G � πr2) � δ (πr2 , πr1), and extend by induction for N > 2. The order of 
G0 = G �πr2 is r2 and from the coarsening sequence (Definition 6) we get that the order 
of G1 = (G � πr2) � δ (πr2 , πr1) is r1 = |π|, therefore, V (G1) = V (G � π). It is left to 
show that E (G1) = E (G � π). Let ε̃ ∈ E (G � π) then ∃ε ∈ EG such that ε̃ = fπ (ε). Now 
let ε1 = fπr2

(ε) and ε2 = fδ (ε1), from the coarsening sequence (Definition 6) we then 
obtain that the end nodes of ε2 are the end nodes of ε̃, therefore, E (G1) = E (G � π). �
Corollary 1 (atom-contraction sequence). Consider a graph G and its partition π ∈ Πr (G)
for r < n. Then there exists a chain χ (V) = {πri}

n−r+1
i=1 ⊆ Π (Vn) such that G �Δ (χ) =

{Gi}n−r
i=0 is an atom contraction sequence, i.e., δ

(
πri+1 , πri

)
is an atom-partition.

Proof. Choose πr1 = π (Vn), and then construct πr2 by extracting a singleton from a 
non-singleton cell of π. Continue to extract singleton cells until all cells are singletons, 
i.e., πrN = πn (Vn). The number of singleton extractions of non-singleton cells in an 
r-partition is n − r, therefore, N = n − r + 1. �

For example, consider the 2-chain χ (V5) = {π2, π3} with

π2 (V5) =

⎧⎪⎨
⎪⎩{v1, v2, v3}︸ ︷︷ ︸

C1

, {v4, v5}︸ ︷︷ ︸
C2

⎫⎪⎬
⎪⎭ , and π3 (V5) =

⎧⎪⎨
⎪⎩{v1, v2}︸ ︷︷ ︸

C1

, {v3}︸︷︷︸
C2

, {v4, v5}︸ ︷︷ ︸
C3

⎫⎪⎬
⎪⎭ .

We have C1 (π3) , C2 (π3) ⊆ C1 (π2) and C3 (π3) ⊆ C2 (π2), therefore, π3 < π2. We can 
then construct the coarsening sequence Δ (χ) = δ (π3, π2) with δ (π3, π2) = {{1, 2}︸ ︷︷ ︸

C1

, {3}︸︷︷︸
C2

}. 

The resulting graph contraction sequence is presented in Fig. 3.
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Fig. 3. The graph contraction sequence leading to G � π2: first the contraction G0 = G � π3 is performed 
followed by the contraction over the coarsing G1 = G0 � δ (π3, π2).

3.2. Edge contractions

Graph contractions are defined over vertex partitions. However, there is also an edge-
based approach to perform graph contractions.

Definition 8 (edge contraction partition). Consider a graph G and an edge contraction 
set Ecs ⊂ E(G) with |Ecs| = n − r. Then we define the edge contraction partition
πc (G, Ecs) as the connected components partition of the graph Gc (G, Ecs) = (V (G) , Ecs), 
i.e., πc (G, Ecs) = πcc (Gc (G, Ecs)). The set of all edge contraction sets of cardinality p is 
defined as Ξp (G) � {Ecs ⊂ E (G) | |Ecs| = p}.

With the edge contraction partition definition we can define an edge-based graph 
contraction.

Definition 9 (edge-based graph contraction). Consider a graph G and an edge contraction 
set Ecs ∈ Ξn−r (G) for r < n. Then the edge-based contraction is defined as the contraction 
over the edge contraction partition, i.e., G � Ecs = G � πc (G, Ecs).

In this work we find that a class of edge-matching contractions has interlacing prop-
erties.

Definition 10 (edge-matching contraction). Consider a graph G and an edge contraction 
set Ecs ∈ Ξn−r (G) for r < n. Then G � Ecs is an edge-matching contraction if there is 
one-to-one correspondence between E (G) \Ecs and E (G � Ecs).

A graph contraction cannot create new edges, therefore, edge-matching (Definition 10) 
is equivalent to |E (G) \Ecs| = |E (G � Ecs)|.
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Proposition 5. Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G). Then if 
G � Ecs is cycle-invariant (Definition 4) it is also edge-matching (Definition 10).

Proof. If G � Ecs is cycle-invariant then from Definition 4 the edges in Ecs are not part 
of any cycle of G. Therefore, the contraction does not map any two edges in E (G) \Ecs
to a single edge in E (G � Ecs), otherwise they would have been part of a cycle with an 
edge in Ecs, and we obtain that |E (G) \Ecs| = |E (G � Ecs)|. �
Proposition 6. Consider a graph G and a node v ∈ V (G), and let πcc (G\v) be the con-
nected component partition of G\v, then for Ci ∈ πcc (G\v) and Ecs = E (G [Ci ∪ v]), the 
contraction G � Ecs is node-removal equivalent (Definition 3) with VS = Ci, and is also 
edge-matching (Definition 10).

Proof. Since Ci is a connected component of G\E (G [Nv ∪ v]) then v is the only node in 
any path between Ci and V (G) \ {Ci ∪ v}, therefore, by choosing VS = Ci the graph G\Ci

removes all edges E (G [Ci]) and all edges connecting Ci to V (G) \Ci which are the edges 
between Ci and v and we obtain that G\Ci = G � E (G [Ci ∪ v]), i.e., the contraction 
G � Ecs is node-removal equivalent (Definition 3). Furthermore, contracting all edges 
E (G [Ci ∪ v]) does not effect any other edges in G such that |E (G) \Ecs| = |E (G � Ecs)|
and we obtain that G � Ecs is edge-matching. �

We can choose a subset of tree edges to create a tree-based contraction of a graph.

Definition 11 (tree-based contraction). Consider a graph G and its spanning tree T ∈
T (G) with an edge contraction set Ecs ∈ Ξn−r (T ). Then G � Ecs is a tree-based contrac-
tion.

For example, the graph contraction G � π presented in Fig. 2 can also be performed 
as an edge-based contraction G � Ecs with Ecs = {{v1, v3} , {v2, v3}} and a tree-based 
contraction (Definition 11).

If the contraction edge set is a subset of the edges of a spanning tree, then the 
contracted tree edges will form a spanning tree of the contracted graph.

Proposition 7. Consider a graph G and its spanning tree T ∈ T (G) with an edge con-
traction set Ecs ∈ Ξn−r (T ). Then T � Ecs ∈ T (G � Ecs), i.e., T � Ecs is a tree of order 
r of the contracted graph.

Proof. A tree of order n has n − 1 edges, and by contracting n − r tree edges we are 
left with (n− 1) − (n− r) edges, such that |E (T � Ecs)| = r − 1. It is left to show 
that T � Ecs (T ) ⊆ G � Ecs (T ). From Lemma 3 we obtain that T � Ecs is connected, 
therefore, T � Ecs is a connected graph of order r with r − 1 edges, which is a tree 
of order r. Since Ecs (T ) ⊆ E (G) we have πc (T , Ecs (T )) = πc (G, Ecs (T )), and since 
T = G\E (C) we obtain from the subgraph contraction lemma (Lemma 1) that T �
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πc (T , Ecs (T )) ⊆ G � πc (T , Ecs (T )) and conclude that T � Ecs (T ) ⊆ G � Ecs (T ), and 
therefore, T � Ecs (T ) ∈ T (G � Ecs). �
Proposition 8. Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G). Then 
∀ṽ ∈ V (G � Ecs)

dṽ (G � Ecs) ≤

⎛
⎝ ∑

v∈Cṽ(π)

dv (G)

⎞
⎠− 2 (|Cṽ (π)| − 1) , (5)

where π = πc (G, Ecs).

Proof. From Proposition 3 we obtain that dṽ (G � π) = |fπ (NCṽ
)|. We have |fπ (NCṽ

)| ≤
|NCṽ

| and since Cṽ (π) ∈ πc is a connected component of G we get

|NCṽ
| ≤

⎛
⎝ ∑

v∈Cṽ(π)

dv (G)

⎞
⎠− 2 |E (G [Cṽ (π)])| .

The number of edges in the cell |E (G [Cṽ (π)])| is at least the number of spanning tree 
edges, therefore, |E (G [Cṽ (π)])| ≥ |Cṽ (π)| − 1, and we obtain that

dṽ (G � Ecs) ≤

⎛
⎝ ∑

v∈Cṽ(π)

dv (G)

⎞
⎠− 2 (|Cṽ (π)| − 1) ,

completing the proof. �
Corollary 2. Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n. 
Then if G � Ecs is cycle-invariant (Definition 3) then ∀ṽ ∈ V (G � Ecs),

dṽ (G � Ecs) =

⎛
⎝ ∑

v∈Cṽ(π)

dv (G)

⎞
⎠− 2 (|Cṽ (π)| − 1) , (6)

where π = πc (G, Ecs).

Proof. Since ∀ṽ ∈ V (G � Ecs) Cṽ (π) is a connected component of G, and G � Ecs is 
cycle-invariant then |fπ (NCṽ

)| = |NCṽ
| and G [Cṽ (π)] is a tree of order |Cṽ (π)|, such 

that from Proposition 3 we obtain that

dṽ (G � Ecs) =

⎛
⎝ ∑

v∈Cṽ(π)

dv (G)

⎞
⎠− 2 (|Cṽ (π)| − 1) . �

Corollary 3. If a graph G is a tree then G � Ecs is edge-matching for any Ecs ∈ Ξn−r (G).
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Proof. If G is a tree then G � Ecs is cycle-invariant for any Ecs ∈ Ξn−r (G) and from 
Proposition 5 we obtain that G � Ecs is edge-matching. �

Trees and cycle-completing edges are the building blocks of any connected graph, and 
this tree and co-tree structure is described by the Tucker representation [16, p. 113].

Definition 12 (Tucker representation). Consider a graph G and its spanning tree T ∈
T (G) with co-tree C (T ), with arbitrary head and tail assigned to the end-nodes of each 
edge in E (G). For each edge εj ∈ E (C) there is a path from head to tail in T , and 
we define a corresponding signed path vector tj ∈ R|E(T )|, [tj ]k = 1 if εk (T ) (with 
the assigned head and tail) is along the path, [tj ]k = −1 if εk (T ) is opposite to the 
path, and [tj ]k = 0 otherwise. The Tucker representation of the co-tree is then the 
matrix T(T ,C) ∈ R|E(T )|×|E(C)| where the jth column of T(T ,C) is the signed path vector 
tj ∈ R|E(T )| of the corresponding edge εj ∈ E (C).

Proposition 9. Consider a graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n, 
and let T ∈ T (G). Then G�Ecs is cycle-invariant (Definition 4) if and only if Ecs ⊆ E (T )
and the corresponding rows of T(T ,C) are all zeros.

Proof. If G � Ecs is cycle-invariant then from Definition 4 the edges in Ecs are not part 
of any cycle of G, therefore, Ecs ⊆ E (T ) for any T ∈ T (G). If ε ∈ E (T ) is not part 
of any cycle in G then from the Tucker representation (Definition 12) we get that the 
corresponding row of T(T ,C) is all zeros.

If Ecs ⊆ E (T ) and the corresponding rows of T(T ,C) are all zeros, then the edges in 
Ecs are not part of any cycle in G, such that the tree-based contraction (Definition 11) 
G � Ecs is cycle-invariant. �
4. Interlacing graph contractions

The general interlacing graph reduction problem (Problem 1) becomes intractable 
as the dimension increases. If we restrict the class of reduced-order graphs to graph 
contractions then we get the following interlacing graph contraction problem.

Problem 2 (interlacing graph contraction). Consider a graph G and a real symmetric 
graph matrix M (G) ∈ Rn×n. Then given r < n find π ∈ Πr (G) such that G � π ∝M G.

The number of r-partitions is |Πr (G)| = S (n, r) where

S (n, r) =
r∑

k=1

(−1)r−k kn

k! (r − k)! ,

is the Stirling number of the second kind [11, p. 18], which for r � n is asymptotically 
S (n, r) ∼ rn . If we restrict the problem to edge-based contractions then the number 
r!
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of partitions is the number of n − r edge contractions is |Ξn−r (G)| =
(

m

n− r

)
where 

m = |E (G)|. For large n, the asymptotic behavior of the binomial is exponential, e.g. 

for central binomial coefficients 
(

2n
n

)
∼ 4n

√
πn

[17], therefore, finding interlacing edge 

contractions is numerically intractable by an exhaustive search. In the following section 
we show how cycle-invariant and node-removal equivalent contractions have associated 
subspaces required by Theorem 3 and lead to efficient algorithms for finding interlacing 
graphs.

Consider a graph G = (V, E) of order n and an r-partition π ∈ Πr (G) and consider 
a subset VS ⊂ V (G), |VS | = n − r for r < n. Then we define the following subspaces of 
dimension r. The partition subspace Fπ ⊆ Rn is the space of all vectors in Rn such that 
variables with indexes in the same partition cell are equal,

Fπ � {x ∈ Rn|xj = xk,∀j, k ∈ Ci (π) ,∀i ∈ [1, r]} , (7)

and the corresponding partition linear mapping pFπ
(x̃) : Rr → Rn,

[pFπ
(x̃)]k = {x̃i|k ∈ Ci (π)} . (8)

We define the anti-partition subspace F̃π ⊆ Rn such that for x ∈ F̃π the sum of all 
vector variables in non-singleton partition cells is zero

F̃π �
{
x ∈ Rn|xvj(Ci(π)) = −

xv1(Ci(π))

|Ci (π)| − 1 ,
∀i ∈ [1, r] , |Ci (π)| > 1

∀j ∈ [2, |Ci (π)|]

}
, (9)

and the corresponding anti-partition linear mapping, pF̃π
(x̃) : Rr → Rn,

[
pF̃π

(x̃)
]
k

=
{
x̃k k = v1 (Ci (π))
− x̃k

|Ci(π)|−1 k = vj (Ci (π)) , j ≥ 2
, (10)

where vj (Ci (π)) denotes the j’th node of the i’th partition cell.
The node-removal subspace, FVS

⊆ Rn, is defined as

FVS
� {x ∈ Rn|xi = 0, i ∈ VS} , (11)

and the corresponding node-removal linear mapping pFVS
(x̃) : Rr → Rn,

[
pFVS

(x̃)
]
k

=
{
x̃k k /∈ VS

0 o.w.
. (12)



306 N. Leiter, D. Zelazo / Linear Algebra and its Applications 612 (2021) 289–317
Proposition 10. Consider a graph G and an edge-matching and node-removal equivalent 
contraction G � Ecs (Definitions 10 and 3) with Ecs ∈ Ξn−r (G) for r < n. Then for 
x̃ ∈ Rr we have

R (L (G) , pFπ
(x̃)) ≤ R (L (G � Ecs) , x̃) ,

and

R
(
L (G) , pFVS

(x̃)
)
≥ R (L (G � Ecs) , x̃) .

Proof. Let x = pFπ
(x̃) for x̃ ∈ Rr. The Rayleigh quotients of the Laplacian takes the 

form [3]

R (L (G) , x) =

∑
{u,v}∈E(G)

(xv − xu)2∑
v∈V(G)

x2
v

.

Separating the edges to Ecs and E\Ecs, the sum 
∑

{u,v}∈E(G)
(xv − xu)2 can be written 

as ∑
{u,v}∈E(G)

(xv − xu)2 =
∑

{u,v}∈E(G)\Ecs

(xu − xv)2 +
∑

{u,v}∈Ecs

(xu − xv)2 .

Therefore, if x ∈ Fπ and {u, v} ∈ Ecs then 
∑

{u,v}∈Ecs

(xu − xv)2 = 0 and

∑
{u,v}∈E

(xv − xu)2 =
∑

{u,v}∈E\Ecs

(xu − xv)2 .

Since G � Ecs is edge-matching (Definition 10) there is one-to-one correspondence be-
tween E (G) \Ecs and E (G � Ecs) (Proposition 5), and substituting the partition mapping 
x = pFπ

(x̃) (Eq. (8)) we get∑
{u,v}∈E\Ecs

(xu − xv)2 =
∑

{u,v}∈E(G�Ecs)

(x̃u − x̃v)2 .

Rearranging the sums 
∑
v∈V

x2
v over the vertices of each partition cell and substituting 

the partition mapping x = pFπ
(x̃) (Eq. (8)) we get,

∑
v∈V(G)

x2
v =

r∑
i=1

∑
v∈Ci(π)

x2
v

=
∑

u∈V(G�Ecs)

x̃2
u |Cu (π)| ,
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The Rayleigh quotients of the Laplacian is then

R (L (G) , pFπ
(x̃)) =

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2∑
u∈V(G�Ecs)

x̃2
u |Cu (π)| ,

and we have |Ci (π)| ≥ 1, therefore,

R (L (G) , pFπ
(x̃)) ≤

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2∑
u∈V(G�Ecs)

x̃2
u

= R (L (G � Ecs) , x̃) .

If G � Ecs is node-removal equivalent (Definition 3) then by substituting the node-
removal mapping x = pFVS

(x̃) (Eq. (8)) we get

∑
{u,v}∈E\Ecs

(xu − xv)2 =
∑

{u,v}∈E(G�Ecs)

(x̃u − x̃v)2

and ∑
v∈V(G)

x2
v =

∑
u∈V(G�Ecs)

x̃2
u,

and we obtain that

R
(
L (G) , pFVS

(x̃)
)
≥

∑
{u,v}∈E\Ecs

(xv − xu)2∑
v∈V(G)

x2
v

=

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2∑
u∈V(G�Ecs)

x̃2
u

= R (L (G � Ecs) , x̃) . �
Proposition 11. Consider a graph G and a cycle invariant contraction G � Ecs (Defini-
tion 4) with Ecs ∈ Ξn−r (G) for r < n. Then for x̃ ∈ Rr we have

R (L (G) , pFπ
(x̃)) ≤ R (L (G � Ecs) , x̃) ,

and if G � Ecs is a single edge contraction with Ecs = εcs then

R
(
L (G) , pF̃ (x̃)

)
≥ R (L (G � εcs) , x̃) .
π
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Proof. The Rayleigh quotient of the normalized-Laplacian takes the form [3]

R (L (G) , x) =

∑
{u,v}∈E(G)

(xv − xu)2∑
v∈V(G)

x2
vdv (G) . (13)

Since G � Ecs is a cycle-invariant contraction it is edge-matching (Proposition 5) and 
there is one-to-one correspondence between E (G) \Ecs and E (G � Ecs) (Proposition 5), 
and substituting the partition mapping x = pFπ

(x̃) for x̃ ∈ Rr (Eq. (8)) we get as in 
Eq. (4)

∑
{u,v}∈E(G)

(xv − xu)2 =
∑

{u,v}∈E\Ecs

(xu − xv)2

=
∑

{u,v}∈E(G�Ecs)

(x̃u − x̃v)2 .

Rearranging the sum 
∑

v∈V(G)
x2
vdv (G) over the vertices of each partition cell and sub-

stituting the partition mapping x = pFπ
(x̃) (Eq. (8)) we get,

∑
v∈V(G)

x2
vdv (G) =

r∑
i=1

∑
v∈Ci(π)

x2
vdv (G) ,

=
∑

u∈V(G�Ecs)

x̃2
u

⎛
⎝ ∑

v∈Cu(π)

dv (G)

⎞
⎠ .

The graph contraction G�Ecs is cycle-invariant, therefore, from Proposition 2 we have 

du (G � Ecs) =
( ∑

v∈Cu(π)
dv (G)

)
− 2 (|Cu (π)| − 1), and

∑
v∈V(G)

x2
vdv (G) =

∑
u∈V(G�Ecs)

x̃2
u [du (G � Ecs) + 2 (|Cu (π)| − 1)] .

The Rayleigh quotients of the normalized-Laplacian (Eq. (13)) is then

R (L (G) , pFπ
(x̃)) =

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2∑
x̃2
u [du (G � Ecs) + 2 (|Cu (π)| − 1)] .
u∈V(G�Ecs)
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We have |Ci (π)| ≥ 1 such that 2 (|Ci (π)| − 1) ≥ 0, therefore,

R (L (G) , pFπ
(x̃)) ≤

∑
{u,v}∈E(G�Ecs)

(x̃u − x̃v)2∑
u∈V(G�Ecs)

x̃2
udu (G � Ecs)

= R (L (G � Ecs) , x̃) .

Let G � εcs be a cycle-invariant edge contraction with corresponding edge contraction 
partition π ∈ Πn−1 (G). For an atom-contraction there is only one non-singlet cell, and 
without loss of generality we can choose it to be Cn−1 (π) = {n− 1, n} such that the 
contracted edge is εcs = {xn−1, xn}, and

R (L (G) , x) =

∑
{u,v}∈E\Ecs

(xu − xv)2 + (xn−1 − xn)2

n−2∑
v=1

x2
vdv (G) + x2

n−1dn−1 (G) + x2
ndn (G)

.

For this atom-contraction, we have the anti-partition space F̃π =
{x ∈ Rn |xn−1 = −xn} (Eq. (9)) and anti-partition mapping pF̃π

(x̃) : Rn−1 → Rn is 
(Eq. (10))

[
pF̃π

(x̃)
]
k

=
{
x̃k k ≤ n− 1
−x̃n−1 k = n

,

such that

R
(
L (G) , pF̃π

(x̃)
)

=

∑
{u,v}∈E\Ecs

(x̃u − x̃v)2 + 4x̃2
n−1

n−2∑
v=1

x̃2
vdv (G) + x̃2

n−1 (dn−1 (G) + dn (G))
.

There is one-to-one correspondence between E (G) \εcs and E (G � εcs) (Proposition 5), 
therefore, 

∑
{u,v}∈E\Ecs

(x̃u − x̃v)2 =
∑

{u,v}∈E(G�εcs)
(x̃u − x̃v)2, and from Proposition 2 we 

get

dv (G � εcs) =
{
dv (G) v ≤ n− 2
dn−1 (G) + dn (G) − 2 v = n− 1

,

such that

R
(
L (G) , pF̃π

(x̃)
)

=

∑
{u,v}∈E(G�εcs)

(x̃u − x̃v)2 + 4x̃2
n−1∑

x̃2
vdv (G � εcs) + 2x̃2

n−1

v∈V(G�εcs)
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= R (L (G � εcs) , x̃)
1 + 4x̃2

n−1∑
{u,v}∈E(G�εcs)

(x̃u−x̃v)2

1 + 2x̃2
n−1∑

v∈V(G�εcs)
x̃2
vdv(G�εcs)

.

For any G we have R (L (G) , x) ≤ 2 [18], therefore,∑
{u,v}∈E(G�εcs)

(x̃u − x̃v)2 ≤ 2
∑

v∈V(G�εcs)

x̃2
vdv (G � εcs)

and

1 + 4x̃2
n−1∑

{u,v}∈E(G�εcs)
(x̃u−x̃v)2

1 + 2x̃2
n−1∑

v∈V(G�εcs)
x̃2
vdv(G�εcs)

≥ 1,

and we obtain that R
(
L (G) , pF̃π

(x̃)
)
≥ R (L (G � εcs) , x̃) for any cycle invariant single 

edge contraction. �
The only graph contraction interlacing result known to the authors has been presented 

by Chen et al. [3]:

Theorem 4 (normalized-Laplacian interlacing disjoint neighborhood contraction). Con-
sider a graph G and two vertices u, v ∈ V (G) with corresponding partition π ∈ Πn−1 (G)
with only one non-singlet cell Cn−1 (π) = {u, v}. Then if u, v have disjoint neighbor-
hoods, i.e., Nu (G) ∩ {Nv (G) ∪ v} = ∅, the atom contraction is normalized-Laplacian 
interlacing, i.e., G � π ∝L G.

Proof. The proof is given in [3] and is based on a sequence of min-max inequali-
ties and the Courant–Fischer theorem (Theorem 2). In the perspective of this work, 
Theorem 4 can be proven based on Theorem 3 as follows: Let G � π be an atom con-
traction with Cn−1 (π) = {u, v} and Nu (G) ∩ {Nv (G) ∪ v} = ∅. We notice that if 
Nu (G) ∩ {Nv (G) ∪ v} = ∅ then G � π is edge-matching (Definition 10). Similar to 
Proposition 11 it can then be shown that R (L (G) , pFπ

(x)) ≤ R (L (G � π) , x) and 
R
(
L (G) , pF̃π

(x̃)
)
≥ R (L (G � π) , x), therefore, from Theorem 3 with A ≡ Fπ and 

B ≡ F̃π we then get that G � π ∝L G. �
In this study, based on Theorem 3, we derive two interlacing theorems, Laplacian 

interlacing for node-removal equivalent edge-matching contractions (Theorem 5) and 
normalized Laplacian interlacing for cycle-invariant contractions (Theorem 6).

Theorem 5 (Laplacian interlacing node-removal equivalent contraction). Consider a 
graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n. If G�Ecs is edge-matching 
(Definition 10) and node-removal equivalent (Definition 3) then G � Ecs ∝L G.
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Proof. The contraction G � Ecs is edge-matching and node-removal equivalent such 
that from Proposition 10 we have R (L (G) , pFπ

(x)) ≤ R (L (G � Ecs) , x) and R(L (G) ,
pFVS

(x)) ≥ R (L (G � Ecs) , x). Therefore, from Theorem 3 with A ≡ Fπ and B ≡ FV we 
then get that G � Ecs ∝L G. �
Theorem 6 (normalized-Laplacian interlacing cycle-invariant contraction). Consider a 
graph G and an edge contraction set Ecs ∈ Ξn−r (G) for r < n. Then if G � Ecs is 
cycle-invariant (Definition 3), G � Ecs ∝L G.

Proof. The graph contraction can be performed by a sequence of atom-contractions 
(Corollary 1), therefore, it is sufficient to show that the interlacing property holds for 
a single edge-contraction, i.e., G � εcs ∝L G where εcs is a single contracted edge. The 
interlacing of the sequence will then follow from Proposition 1. Let G � εcs be a cycle-
invariant edge contraction with corresponding edge contraction partition π ∈ Πn−1 (G). 
Without loss of generality we can label the vertices such that the contracted edge 
is εcs = {xn−1, xn}, and the anti-partition space is F̃π (x̃) = {x ∈ Rn |xn−1 = −xn}
(Eq. (4)). From Proposition 11 we have R (L (G) , pFπ

(x)) ≤ R (L (G � εcs) , x) and 
R
(
L (G) , pF̃π

(x̃)
)
≥ R (L (G � εcs) , x), therefore, from Theorem 3 with A ≡ Fπ and 

B ≡ F̃π we then get that G � εcs ∝L G. By performing the contraction sequence (Propo-
sition 1) we get G � Ecs ∝L G. �
Corollary 4. Consider a tree T = (V, E) of order n, and its contraction T � Ecs for any 
Ecs ∈ Ξn−r (T ). Then T � Ecs ∝L T .

Proof. The contraction T �Ecs is cycle-invariant for any Ecs ∈ Ξn−r (T ) , therefore, from 
Theorem 6 we obtain that T � Ecs ∝L T . �

Theorem 5 and Theorem 6 allow us to try and solve the interlacing graph contraction 
problem (Problem 2) for normalized Laplacian and Laplacian interlacing by finding a 
cycle-invariant contraction (Problem 3) or a node-removal equivalent and edge matching 
contraction (Problem 4) respectively.

Problem 3 (cycle-invariant contraction). For a graph G and a given reduction order 
r < n, find Ecs ∈ Ξn−r (G) such that G � Ecs is cycle-invariant (Definition 4).

Problem 4 (node-removal equivalent contraction). For a graph G and a given reduction 
order r < n, find Ecs ∈ Ξn−r (G) such that G � Ecs is node-removal equivalent (Defini-
tion 3) and edge-matching (Definition 10).

From Proposition 9, we can obtain a cycle-invariant contraction, if exists, from 
the zero rows of the Tucker representation. A Tucker representation T(T ,C) can be 
calculated by finding a spanning tree T ∈ T (G) and then finding the path in T be-
tween the end-nodes of each edge of C (T ) as described in Algorithm 1. Each path 



3

Algorithm 1 Cycle-invariant contraction algorithm.
Input: graph G of order n, required reduction order r

1. Find a spanning tree T ∈ T (G) and the co-tree C (T ).
2. Calculate the tucker representation T(T ,C) (Definition 12).
3. Choose n − r cycle-invariant edges from the zero rows of T(T ,C) and obtain Ecs.

Output: Gr = G � Ecs

Algorithm 2 Node-removal equivalent contraction algorithm.
Input: graph G of order n, required reduction order r

1. For v ∈ V (G): Calculate πcc (G\v), the connected components partition of G\v.
2. Choose a subset of cells S ⊆ {πcc (G\v)}n

v=1 with a total number of n − r unique nodes.
3. Construct Ecs = ∪Cv∈SE (G [Cv ∪ v]).

Output: Gr = G � Ecs

finding operation, e.g., with a depth-first search, is of complexity O (n), and since 
O (|E (C)|) = O (|E (G)|) the overall complexity of constructing T(T ,C) is O (mn), where 
m = |E (G)|. Therefore, the cycle-invariant contraction algorithm (Algorithm 1) is of 
complexity O (mn).

From Proposition 6, we can obtain a node-removal equivalent and edge matching 
contraction, if exists, by first finding for all vertices of G the connected components par-
tition πcc (G\v) and then constructing Ecs by choosing from all partitions {πcc (G\v)}nv=1
a subset of cells with a total number of n − r unique nodes (Algorithm 3). Each 
connected component finding operation, e.g., with a depth-first search, is of com-
plexity O (n + m), and repeated n times, the overall complexity of the algorithm is 
O

(
n2 + nm

)
.

The feasibility of the cycle-invariant and node-removal equivalent problems requires 
further study.

5. Case studies

As a small-scale normalized Laplacian interlacing example, we consider a graph of 
order 6 presented in Fig. 4, and we require the reduced graph to be of order r = 4. A 
cycle-invariant graph contraction is then performed with two edges (Fig. 4). The resulting 
reduced graph (Fig. 4) has normalized-Laplacian spectra {λk (L (Gr))}rk=1 given in Fig. 5
with the upper and lower interlacing bounds λk (L (G)) and λn−r+k (L (G)). Since G�Ecs
is cycle-invariant, then as according to Theorem 6, we get G�Ecs ∝L G and the reduced-
order spectra is within the interlacing bounds (Fig. 5).

As a small-scale Laplacian interlacing example, we consider a graph of order 6 pre-
sented in Fig. 6 and require the reduction to be of order r = 4. For this case the only 
node-removal equivalent and edge-matching contraction is with the three edges shown 
in Fig. 6. The resulting reduced graph (Fig. 6) has Laplacian spectra given in Fig. 7
with the interlacing bounds λk (L (G)) and λn−r+k (L (G)). Since G�Ecs is node-removal 
equivalent and edge-matching, then as according to Theorem 5 we get G � Ecs ∝L G and 
the reduced-order Laplacian spectra is within the interlacing bounds (Fig. 7). Notice 
12 N. Leiter, D. Zelazo / Linear Algebra and its Applications 612 (2021) 289–317
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Fig. 4. Small scale normalized-Laplacian interlacing graph contraction (contracted edges dashed-red). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Reduced-order normalized-Laplacian spectra (stared-red) and interlacing bounds (circled-blue).

Fig. 6. Small scale Laplacian interlacing graph contraction (contracted edges dashed-red).
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Fig. 7. Reduced-order Laplacian spectra (stared-red) and interlacing bounds (circled-blue).

Fig. 8. Reduced-order normalized-Laplacian spectra (stared-red) and interlacing bounds (circled-blue).

that for this case there is no cycle-invariant contraction, and for the same choice of Ecs
(Fig. 6) the reduced-order normalized-Laplacian does not interlace with the full-order 
normalized-Laplacian as λ4 (L (Gr)) > λ6 (L (G)) (Fig. 8).

As a larger and more complicated example, a random tree of order 50 is created and 
10 cycle-completing edges are randomly added to it resulting in a graph of order 50
with 59 edges (Fig. 9). The required reduction order is r = 30. Using the cycle-invariant 
contraction algorithm (Algorithm 1) an edge-contraction set Ecs with n − r = 20 edges 
is chosen from the edges of G (Fig. 9), and the graph contraction is performed. As 
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Fig. 9. Large scale normalized-Laplacian interlacing graph contraction (contracted edges dashed-red).

Fig. 10. Reduced-order normalized-Laplacian spectra (stared-red) and interlacing bounds (circled-blue).

according to Theorem 6, the resulting reduced-order graph Gr = G � Ecs is normalized-
Laplacian interlacing with G and the reduced spectra is within the interlacing bounds 
(Fig. 10).

Using the node-removal equivalent contraction algorithm (Algorithm 2) a different 
edge-contraction set Ecs with n − r = 20 edges is chosen from the edges of G (Fig. 11), 
and the graph contraction is performed. As according to Theorem 5, the resulting reduced 
order graph Gr = G�Ecs (Fig. 11) is Laplacian interlacing with G and the reduced spectra 
is within the interlacing bounds (Fig. 12).
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Fig. 11. Large scale Laplacian interlacing graph contraction.

Fig. 12. Reduced-order Laplacian spectra (stared-red) and interlacing bounds (circled-blue).
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